MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Inteligencia artificial es más exacta que los médicos para predecir los ataques cardíacos

Por el equipo editorial de MedImaging en español
Actualizado el 29 May 2019
Investigadores del Centro TEP de Turku (Turku, Finlandia) desarrollaron un algoritmo que “aprendió” cómo interactúan los datos de las imágenes al analizar repetidamente 85 variables en 950 pacientes con resultados conocidos de seis años. Luego, el algoritmo identificó patrones que correlacionaban las variables con la muerte y el ataque cardíaco con más del 90% de exactitud.

Los médicos usan las puntuaciones de riesgo para tomar decisiones sobre el tratamiento, aunque estas puntuaciones se basan solo en unas pocas variables y, a menudo, tienen una exactitud modesta en los pacientes individuales. Mediante la repetición y el ajuste, el aprendizaje automático puede explotar grandes cantidades de datos e identificar patrones complejos que pueden no ser evidentes para los humanos.

Para el estudio, los investigadores reclutaron a 950 pacientes con dolor torácico en quienes realizaron el protocolo habitual del centro para detectar una enfermedad de la arteria coronaria. Un examen de angiografía coronaria por tomografía computarizada (CCTA, por sus siglas en inglés) produjo 58 datos de la presencia de placa coronaria, estrechamiento de vasos y calcificación. A aquellos con exámenes sugestivos de enfermedad les realizaron una tomografía por emisión de positrones (TEP), que produjo 17 variables en el flujo sanguíneo.

Se obtuvieron diez variables clínicas a partir de las historias clínicas, incluyendo sexo, edad, tabaquismo y diabetes. Durante un seguimiento promedio de seis años, hubo 24 ataques cardíacos y 49 muertes por cualquier causa. Las 85 variables se ingresaron en un algoritmo de aprendizaje automático, llamado LogitBoost, que las analizó una y otra vez hasta que encontró la mejor estructura para predecir quién tuvo un ataque cardíaco o murió.

El desempeño predictivo utilizando solo las diez variables clínicas (similar a la práctica clínica actual) fue modesto, con un área bajo la curva (AUC) de 0,65 (donde 1,0 es una prueba perfecta y 0,5 es un resultado aleatorio). Cuando se agregaron los datos de la TEP, el AUC aumentó a 0,69. El desempeño predictivo aumentó significativamente (p = 0,005) cuando se agregaron los datos de la CCTA a los datos clínicos y de la TEP, lo que dio un AUC de 0,82 y una exactitud de más del 90%.

“Nuestro estudio muestra que los patrones de dimensiones muy altas son más útiles que los patrones de una sola dimensión para predecir los resultados en individuos y para eso necesitamos el aprendizaje automático”, dijo el Dr. Luis Eduardo Juárez-Orozco, autor del estudio. “Los médicos ya recopilan mucha información sobre los pacientes, por ejemplo, aquellos con dolor en el pecho. Descubrimos que el aprendizaje automático puede integrar estos datos y predecir con exactitud el riesgo individual. Esto debería permitirnos personalizar el tratamiento y, en última instancia, conducir a mejores resultados para los pacientes”.

Enlace relacionado:
Centro TEP de Turku


Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Ultrasonic Diagnostic System
K10
Portable DR Flat Panel Detector
VIVIX-S 1012N

Últimas Industria noticias

Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
28 May 2019  |   Industria

Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
28 May 2019  |   Industria

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
28 May 2019  |   Industria