Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Nueva investigación muestra que la IA puede pedir a otra IA una segunda opinión sobre exploraciones médicas

Por el equipo editorial de MedImaging en español
Actualizado el 02 Aug 2023

El campo de la inteligencia artificial médica ha logrado avances notables gracias al aprendizaje profundo. Sin embargo, entrenar estos modelos de aprendizaje profundo generalmente requiere una gran cantidad de datos anotados. Este proceso de anotar grandes conjuntos de datos no solo requiere mucha mano de obra, sino que también es susceptible a los sesgos humanos, especialmente para tareas de predicción densas como la segmentación de imágenes. Inspirándose en algoritmos semisupervisados, que utilizan tanto datos etiquetados como no etiquetados para el entrenamiento, los investigadores han creado un nuevo algoritmo de IA de entrenamiento conjunto para imágenes médicas que imita el proceso de buscar una segunda opinión.

La investigación realizada por científicos de la Universidad de Monash (Melbourne, VIC, Australia) aborda el desafío de la disponibilidad limitada de imágenes médicas etiquetadas o anotadas por humanos mediante la adopción de un enfoque de aprendizaje contradictorio o competitivo hacia los datos no etiquetados. Se espera que esta investigación innovadora abra los horizontes del análisis de imágenes médicas para radiólogos y otros expertos en atención médica. La anotación manual de una gran cantidad de imágenes médicas exige mucho tiempo, esfuerzo y experiencia, lo que a menudo limita la disponibilidad de conjuntos de datos de imágenes médicas anotadas a gran escala. El algoritmo diseñado por estos investigadores permite que múltiples modelos de IA aprovechen las fortalezas únicas de los datos etiquetados y no etiquetados, aprendiendo unos de las predicciones de los otros para mejorar la precisión general. La próxima etapa de la investigación se centrará en ampliar la aplicación para acomodar varios tipos de imágenes médicas y desarrollar un producto de extremo a extremo dedicado para su uso en prácticas de radiología.


Imagen: Imagen médica anotada por IA que muestra regiones mejoradas de tumor, núcleo tumoral y edema (Fotografía cortesía de la Universidad de Monash)
Imagen: Imagen médica anotada por IA que muestra regiones mejoradas de tumor, núcleo tumoral y edema (Fotografía cortesía de la Universidad de Monash)

“Nuestro algoritmo ha producido resultados innovadores en el aprendizaje semisupervisado, superando los métodos de vanguardia anteriores. Demuestra un desempeño notable incluso con anotaciones limitadas, a diferencia de los algoritmos que se basan en grandes volúmenes de datos anotados”, dijo Himashi Peiris candidato a Ph.D. en la Facultad de Ingeniería de la Universidad de Monash. “Esto permite que los modelos de IA tomen decisiones más informadas, validen sus evaluaciones iniciales y descubran diagnósticos y decisiones de tratamiento más precisos”.

Enlaces relacionados:
Universidad Monash


Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Wireless Flat Panel Detector
ExamVue 10" x 12" Glassless Substrate Wireless
Digital Radiography System
DuraDiagnost F30

Últimas Imaginología General noticias

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas

Tecnología innovadora revoluciona imágenes mamarias