Nuevos sistemas de puntuación aumentan precisión de informes de radiología generados por IA
Por el equipo editorial de MedImaging en español Actualizado el 20 Aug 2023 |

Las herramientas de inteligencia artificial (IA) que producen de manera eficiente informes narrativos detallados de tomografías computarizadas o radiografías pueden aligerar significativamente la carga de trabajo de los atareados radiólogos. Estos informes de IA van más allá de la simple identificación de anomalías y, en cambio, proporcionan información de diagnóstico compleja, descripciones detalladas, hallazgos matizados y grados apropiados de incertidumbre, de manera similar a cómo los radiólogos humanos describen los resultados de las exploraciones. Si bien han surgido varios modelos de IA capaces de generar informes de imágenes médicas tan detallados, según un nuevo estudio, los sistemas de puntuación automatizados destinados a evaluar estas herramientas están demostrando ser menos efectivos para medir su rendimiento.
En el estudio, los investigadores de la Facultad de Medicina de Harvard (Boston, MA, EUA) probaron varias métricas de puntuación en informes narrativos generados por IA y seis radiólogos humanos leyeron estos informes. El análisis reveló que los sistemas de puntuación automatizados se desempeñaron de manera deficiente en comparación con los radiólogos humanos cuando se trataba de evaluar los informes generados por IA. Estos sistemas malinterpretaron e incluso pasaron por alto errores clínicos significativos cometidos por la herramienta de IA. Garantizar la confiabilidad de los sistemas de puntuación es crucial para que las herramientas de IA continúen mejorando y ganando la confianza de los médicos. Sin embargo, las métricas probadas en el estudio no lograron identificar de manera confiable los errores clínicos en los informes de IA, lo que destaca una necesidad urgente de mejora y el desarrollo de sistemas de puntuación de alta fidelidad que controlen con precisión el desempeño de la herramienta.
Para crear mejores métricas de puntuación, el equipo de investigación diseñó un nuevo método llamado RadGraph F1 para evaluar el desempeño de las herramientas de IA que generan informes radiológicos a partir de imágenes médicas. Además, crearon una herramienta de evaluación compuesta llamada RadCliQ, que combina múltiples métricas para producir una puntuación única que está mas alineada con la forma en que un radiólogo humano evaluaría el desempeño de un modelo de IA. Usando estas nuevas herramientas de puntuación, los investigadores evaluaron varios modelos de IA de última generación y encontraron una brecha notable entre sus puntuaciones reales y las puntuaciones más altas posibles.
En el futuro, los investigadores prevén construir modelos de IA médicos generalistas capaces de realizar varias tareas complejas, incluida la resolución de problemas novedosos. Dichos sistemas de IA podrían comunicarse de manera efectiva con radiólogos y médicos sobre imágenes médicas, ayudando en las decisiones de diagnóstico y tratamiento. El equipo también tiene como objetivo desarrollar asistentes de IA que puedan explicar los hallazgos de imágenes directamente a los pacientes utilizando un lenguaje cotidiano, mejorando la comprensión y el compromiso del paciente. En última instancia, estos avances podrían revolucionar las prácticas de imágenes médicas, mejorando la eficiencia, la precisión y la atención al paciente.
“Evaluar con precisión los sistemas de IA es el primer paso crítico para generar informes de radiología que sean clínicamente útiles y confiables”, dijo el autor principal del estudio, Pranav Rajpurkar, profesor asistente de informática biomédica en el Instituto Blavatnik en HMS. “Al alinearse mejor con los radiólogos, nuestras nuevas métricas acelerarán el desarrollo de la IA que se integra a la perfección en el flujo de trabajo clínico para mejorar la atención al paciente”.
Enlaces relacionados:
Facultad de Medicina de Harvard
Últimas Imaginología General noticias
- Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
- El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
- Tecnología innovadora revoluciona imágenes mamarias
- Sistema de última generación mejora la precisión de procedimientos intervencionistas y diagnóstico guiados por imágenes
- Dispositivo basado en catéter con nuevo enfoque de imágenes cardiovasculares ofrece visión sin precedentes de placas peligrosas
- Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas
- Sistema de TC habilitado por IA proporciona resultados de imágenes más precisos y confiables
- Exámenes de TC tórax de rutina pueden identificar pacientes con riesgo de enfermedad cardiovascular
- Software de planificación quirúrgica preoperatoria de RA hace que la cirugía sea más segura y eficiente
- Biopsia virtual impulsada por IA ayuda a evaluar cáncer de pulmón a partir de exploraciones médicas
- Nuevos materiales imprimibles en 3D para cirugía reconstructiva se pueden monitorear mediante rayos X o TC
- TC con conteo de fotones mejora evaluación de enfermedad arterial coronaria
- Nuevo radiotrazador ilumina exploración PET para detección más temprana de enfermedades
- Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón
- Nueva tecnología muestra imágenes del flujo sanguíneo en tiempo real
- Software de IA para análisis de imágenes de TC de tórax permite tratamiento personalizado para pacientes pulmonares
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más