IA en el punto de atención para rayos X de tórax clasifica con precisión radiografías de tórax óptimas y subóptimas
Por el equipo editorial de MedImaging en español Actualizado el 19 Apr 2023 |

Las radiografías de tórax (RxT) son la prueba de imagen más común y representan casi el 40 % de todos los exámenes de imagen. Esta popularidad se debe a su accesibilidad, practicidad, bajo costo y sensibilidad moderada en el diagnóstico de problemas pulmonares, mediastínicos y cardíacos. Sin embargo, existe una variabilidad significativa en la interpretación de RxT entre los radiólogos. Las imágenes de mayor calidad podrían conducir a lecturas más consistentes y confiables, pero las RxT subóptimas pueden dificultar la detección de hallazgos críticos. Ahora, los modelos de inteligencia artificial (IA) entrenados por radiólogos pueden clasificar con precisión las radiografías de tórax óptimas y subóptimas, lo que podría permitir a los radiólogos repetir exploraciones de baja calidad cuando sea necesario.
Los radiólogos del Hospital General de Massachusetts y la Facultad de Medicina de Harvard (Boston, MA, EUA) han desarrollado modelos de IA que pueden distinguir entre RxT óptimas y subóptimas y proporcionar retroalimentación sobre las razones de la clasificación como sububóptima. Esta retroalimentación, que se ofrece al frente del equipo radiográfico, podría provocar adquisiciones repetidas inmediatas cuando sea necesario. Los radiólogos utilizaron una plataforma de creación de herramientas de IA para crear su modelo que permite a los médicos desarrollar modelos de IA sin experiencia previa en ciencias de la información o programación informática. Este software podría ayudar a reducir la variabilidad entre los radiólogos.
El desarrollo del modelo involucró 3.278 RxT de cinco sitios diferentes. Un radiólogo de tórax evaluó las imágenes e identificó las razones de su calidad subóptima. Luego, estas imágenes anonimizadas se cargaron en una aplicación de servidor de IA para capacitación y pruebas. Se evaluó el rendimiento del modelo en función de su área bajo la curva (AUC) para distinguir entre imágenes óptimas y subóptimas. Las razones de la clasificación subóptima incluyeron anatomía faltante, anatomía torácica oscurecida, exposición inadecuada, volumen pulmonar bajo o rotación de pacientes. Las AUC para la precisión en cada categoría oscilaron entre 0,87 y 0,94.
El modelo demostró un rendimiento constante en todos los grupos de edad, sexos y proyecciones radiográficas diversas. Es importante destacar que, según los expertos, la categorización de subóptima no requiere mucho tiempo y se necesita menos de un segundo por radiografía por categoría para clasificar una imagen como óptima o subóptima. El equipo ha sugerido que esto podría acelerar el proceso de repetición, así como optimizar las auditorías manuales, que suelen ser laboriosas y lentas.
“Un proceso automatizado que utiliza los modelos de IA entrenados puede ayudar a rastrear dicha información en poco tiempo y proporcionar retroalimentación específica a gran escala a los tecnólogos y al departamento sobre causas específicas de la clasificación subóptima”, explicó el grupo, y agregó que a largo plazo esta retroalimentación podría reducir las tasas de repetición, ahorrando tiempo, dinero y exposiciones innecesarias a la radiación.
Enlaces relacionados:
Mass General
Últimas Radiografía noticias
- Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
- IA diagnostica fracturas de muñeca tan bien como radiólogos
- Mamografía anual a partir de los 40 reduce mortalidad por cáncer de mama en 42 %
- GPS humano 3D impulsado por luz allana el camino para cirugía mínimamente invasiva sin radiación
- Nueva tecnología de IA podría revolucionar detección del cáncer en senos densos
- Solución de IA proporciona a radiólogos un "segundo par" de ojos para detectar cánceres de mama
- IA ayuda a radiólogos generales a lograr un rendimiento de nivel de especialista en interpretación de mamografías
- Novedosa técnica de imágenes podría transformar detección del cáncer de mama
- Programa informático combina IA y tecnología de imágenes térmicas para detección temprana de cáncer de mama
- IA supera a lectores humanos en detección de nódulos pulmonares en rayos X
- IA mejora interpretación de radiografías de tórax relacionadas con emergencias por profesionales no radiólogos
- Primera tecnología de IA personalizada en la industria revoluciona diagnóstico mamario de extremo a extremo
- Solución de rayos X de tórax impulsada por IA ofrece detección mejorada de nódulos pulmonares
- Sistema avanzado de rayos X ofrece solución dos en uno para fluoroscopia y radiología general
- IA ayuda a médicos a lograr mayor precisión diagnóstica en interpretación de radiografías de tórax
- Nueva herramienta de IA detecta y caracteriza con precisión microcalcificaciones en mamografía
Canales
RM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más