IA ayuda a optimizar la dosis de radiación de rayos X en tomografía computarizada
Por el equipo editorial de MedImaging en español Actualizado el 16 Mar 2023 |

La tomografía computarizada (TC) es una herramienta de diagnóstico muy eficaz y extensa utilizada por la medicina moderna. Desafortunadamente, existe una preocupación creciente con respecto a la cantidad cada vez mayor de pacientes que se someten a tomografías computarizadas y la cantidad considerable de radiación de rayos X a la que están expuestos. El principio ALARA, comúnmente conocido como "tan bajo como sea razonablemente posible", implica que un paciente debe recibir el beneficio de diagnóstico más significativo con una exposición mínima a la radiación. En términos prácticos, este principio requiere una solución intermedia, ya que la disminución del nivel de radiación administrada generalmente da como resultado una calidad de imagen de TC más pobre. En consecuencia, los profesionales médicos deben lograr un equilibrio entre obtener alta calidad de imágenes de TC y minimizar la exposición del paciente a los rayos X para reducir el riesgo de un diagnóstico erróneo.
Para lograr un equilibrio entre la calidad de la imagen y la exposición a la radiación durante las TC, los profesionales de la salud, incluidos los radiólogos, pueden emplear una estrategia de optimización. Primero, observan imágenes reales generadas por el tomógrafo para identificar anomalías como tumores o tejido inusual. Luego se utilizan métodos estadísticos para calcular la dosis de radiación óptima y la configuración del tomógrafo. Este procedimiento se puede generalizar mediante la adopción de imágenes de TC de referencia obtenidas al escanear fantasmas especialmente diseñados que contienen insertos de diferentes tamaños y contrastes, que representan anomalías estandarizadas. Sin embargo, el análisis manual de imágenes requiere mucho tiempo. Para abordar este problema, un equipo de investigadores de la Universidad de Florencia (Florencia, Italia), en colaboración con radiólogos y físicos médicos, examinó si este proceso podría automatizarse mediante el uso de inteligencia artificial (IA). El equipo creó y entrenó un algoritmo, un "observador modelo", basado en redes neuronales convolucionales (CNN), que podría analizar las anomalías estandarizadas en las imágenes de TC con la misma eficiencia que un profesional.
El equipo necesitaba suficientes datos de entrenamiento y de prueba para su modelo, para lo cual 30 profesionales de la salud examinaron visualmente 1.000 imágenes de TC en un fantasma que imitaba el tejido humano. El fantasma contenía insertos cilíndricos de diferentes diámetros y contrastes, y los observadores tenían que identificar si un objeto estaba presente en la imagen e indicar el nivel de confianza en su evaluación. Esto generó un conjunto de datos de 30.000 imágenes de TC etiquetadas capturadas mediante varias configuraciones de reconstrucción tomográfica, que reflejan con precisión la interpretación humana. Luego, el equipo implementó dos modelos de IA basados en diferentes arquitecturas, UNet y MobileNetV2, y modificó el diseño base de estas arquitecturas para permitirles realizar tanto la clasificación ("¿Hay un objeto inusual en la imagen de TC?") como la localización ("¿Dónde está el objeto inusual?"). Luego, los modelos se entrenaron y probaron utilizando imágenes del conjunto de datos.
El equipo de investigación realizó análisis estadísticos para evaluar varias métricas de desempeño para garantizar que los observadores del modelo emularan con precisión cómo un humano evaluaría las imágenes de TC del fantasma. Los investigadores son optimistas de que, con más esfuerzos, su modelo puede convertirse en un mecanismo viable para la evaluación automatizada de la calidad de la imagen de la TC. Confían en que la aplicación de sus observadores de modelo de IA a mayor escala permitirá evaluaciones de TC más rápidas y seguras que nunca.
“Nuestros resultados fueron muy prometedores, ya que ambos modelos entrenados funcionaron notablemente bien y lograron un porcentaje de error absoluto de menos del 5 %”, dijo la Dra. Sandra Doria, del Departamento de Física de la Universidad de Florencia, quien dirigió el equipo de investigación. "Esto indicó que los modelos podían identificar el objeto insertado en el fantasma con una precisión y confianza similares a las de un profesional humano, para casi todas las configuraciones de reconstrucción y tamaños y contrastes de anomalías".
Enlaces relacionados:
Universidad de Florencia
Últimas Imaginología General noticias
- Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
- El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
- Tecnología innovadora revoluciona imágenes mamarias
- Sistema de última generación mejora la precisión de procedimientos intervencionistas y diagnóstico guiados por imágenes
- Dispositivo basado en catéter con nuevo enfoque de imágenes cardiovasculares ofrece visión sin precedentes de placas peligrosas
- Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas
- Sistema de TC habilitado por IA proporciona resultados de imágenes más precisos y confiables
- Exámenes de TC tórax de rutina pueden identificar pacientes con riesgo de enfermedad cardiovascular
- Software de planificación quirúrgica preoperatoria de RA hace que la cirugía sea más segura y eficiente
- Biopsia virtual impulsada por IA ayuda a evaluar cáncer de pulmón a partir de exploraciones médicas
- Nuevos materiales imprimibles en 3D para cirugía reconstructiva se pueden monitorear mediante rayos X o TC
- TC con conteo de fotones mejora evaluación de enfermedad arterial coronaria
- Nuevo radiotrazador ilumina exploración PET para detección más temprana de enfermedades
- Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón
- Nueva tecnología muestra imágenes del flujo sanguíneo en tiempo real
- Software de IA para análisis de imágenes de TC de tórax permite tratamiento personalizado para pacientes pulmonares
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más