Algoritmo de IA supera a los radiólogos en medición de la propagación del cáncer en TC
Por el equipo editorial de MedImaging en español Actualizado el 26 Oct 2022 |

Los cánceres de cabeza y cuello y sus tratamientos estándar (cirugía, radiación o quimioterapia) conllevan una morbilidad significativa. Afectan la forma en que una persona se ve, habla, come o respira. Por lo tanto, existe un gran interés en desarrollar estrategias de tratamiento menos intensas para los pacientes. Entre los factores que determinan la etapa del cáncer se encuentran el tamaño del tumor original, la cantidad de ganglios linfáticos involucrados y la extensión extraganglionar, cuando las células malignas se diseminan más allá de los bordes de los ganglios linfáticos del cuello hacia el tejido circundante. Ahora, una nueva investigación ha demostrado que la inteligencia artificial (IA) puede mejorar los métodos actuales para predecir el riesgo de que el cáncer de cabeza y cuello se propague fuera de los bordes de los ganglios linfáticos del cuello.
En un estudio realizado por investigadores del Grupo de Investigación del Cáncer ECOG-ACRIN (ECOG-ACRIN, Filadelfia, PA, EUA), un algoritmo de aprendizaje profundo personalizado que usa imágenes de tomografía computarizada (TC) estándar y datos asociados aportados por pacientes que participaron en el estudio E3311 de fase 2 se mostró prometedor, especialmente para pacientes con un nuevo diagnóstico de cáncer de cabeza y cuello relacionado con el virus del papiloma humano (VPH). El conjunto de datos validado E3311 tiene el potencial de contribuir a la estadificación más precisa de la enfermedad y la predicción del riesgo. El ensayo de fase 2 E3311 completado mostró que la radiación de dosis baja a 50 Gray (Gy) sin quimioterapia después de la cirugía transoral condujo a una supervivencia muy alta y una calidad de vida sobresaliente en pacientes con riesgo medio de recurrencia.
Los investigadores desarrollaron y validaron un algoritmo de aprendizaje profundo basado en redes neuronales basado en tomografías computarizadas de diagnóstico, patología y datos clínicos. La fuente fue la cohorte de participantes en el ensayo E3311 que se evaluó en alto riesgo de recurrencia mediante medidas patológicas y clínicas estándar. En el E3311, los pacientes se evaluaron como de alto riesgo si había una extensión extraganglionar (ENE) ≥1 mm. Estos pacientes fueron asignados a quimioterapia y dosis altas de radiación (66 Gy) después de la cirugía transoral.
Los investigadores obtuvieron tomografías computarizadas previas al tratamiento y los correspondientes informes de patología quirúrgica de la cohorte de alto riesgo E3311, según estuvieran disponibles. De 177 exploraciones recopiladas, se anotaron 311 ganglios: 71 (23 %) con ENE y 39 (13 %) con ≥1 mm ENE. La herramienta mostró un alto rendimiento en la predicción de ENE, superando sustancialmente las revisiones realizadas por radiólogos expertos en cabeza y cuello. El equipo ahora planea evaluar el conjunto de datos como parte de futuros estudios de tratamiento para el cáncer de cabeza y cuello. El algoritmo se evaluará por su potencial para mejorar los métodos actuales de estadificación de la enfermedad y evaluación de riesgos.
“El algoritmo de aprendizaje profundo clasificó con precisión el 85 % de los nodos con ENE en comparación con el 70 % de los radiólogos”, dijo Benjamin Kann, MD, quien dirigió el estudio para ECOG-ACRIN. "En cuanto a la especificidad y la sensibilidad, el algoritmo de aprendizaje profundo tuvo una precisión del 78 % frente al 62 % de los radiólogos".
"Nuestra capacidad para desarrollar biomarcadores a partir de imágenes de tomografía computarizada estándar es una nueva y emocionante área de investigación clínica y brinda la esperanza de que podremos adaptar mejor el tratamiento para pacientes individuales, incluida la decisión sobre cuándo utilizar mejor la cirugía y en quién reducir la extensión del tratamiento", agregó la autora principal Barbara A. Burtness, MD.
Enlaces relacionados:
ECOG-ACRIN
Últimas Imaginología General noticias
- Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
- El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
- Tecnología innovadora revoluciona imágenes mamarias
- Sistema de última generación mejora la precisión de procedimientos intervencionistas y diagnóstico guiados por imágenes
- Dispositivo basado en catéter con nuevo enfoque de imágenes cardiovasculares ofrece visión sin precedentes de placas peligrosas
- Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas
- Sistema de TC habilitado por IA proporciona resultados de imágenes más precisos y confiables
- Exámenes de TC tórax de rutina pueden identificar pacientes con riesgo de enfermedad cardiovascular
- Software de planificación quirúrgica preoperatoria de RA hace que la cirugía sea más segura y eficiente
- Biopsia virtual impulsada por IA ayuda a evaluar cáncer de pulmón a partir de exploraciones médicas
- Nuevos materiales imprimibles en 3D para cirugía reconstructiva se pueden monitorear mediante rayos X o TC
- TC con conteo de fotones mejora evaluación de enfermedad arterial coronaria
- Nuevo radiotrazador ilumina exploración PET para detección más temprana de enfermedades
- Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón
- Nueva tecnología muestra imágenes del flujo sanguíneo en tiempo real
- Software de IA para análisis de imágenes de TC de tórax permite tratamiento personalizado para pacientes pulmonares
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más