Algoritmo de IA identifica cáncer de pulmón en imágenes de TC en segundos
Por el equipo editorial de MedImaging en español Actualizado el 29 Aug 2022 |

El cáncer de pulmón, el cáncer más común en todo el mundo, se trata con radioterapia (RT) en casi la mitad de los casos. La planificación de la RT es un proceso manual que requiere muchos recursos y que puede tardar días o semanas en completarse, e incluso los médicos altamente capacitados varían en sus determinaciones de cuánto tejido atacar con radiación. Además, se espera que aumente la escasez de médicos y clínicas de oncología radioterápica en todo el mundo a medida que aumenten las tasas de cáncer. Ahora, un algoritmo de aprendizaje profundo recientemente desarrollado y validado puede identificar y delinear (segmentar) un tumor de cáncer de pulmón de células no pequeñas (CPCNP) en una tomografía computarizada (TC) en segundos. Además, los oncólogos radioterápicos que usaron el algoritmo en clínicas simuladas se desempeñaron tan bien como los médicos que no usaron el algoritmo, mientras trabajaron un 65 % más rápido.
Investigadores del Hospital Brigham and Women's (Boston, MA, EUA) desarrollaron el algoritmo de aprendizaje profundo usando imágenes de TC de 787 pacientes para entrenar su modelo para distinguir tumores de otros tejidos. Probaron el rendimiento del algoritmo utilizando escaneos de más de 1.300 pacientes de conjuntos de datos cada vez más externos. El desarrollo y la validación del algoritmo implicó una estrecha colaboración entre los científicos de datos y los oncólogos radioterápicos. Por ejemplo, cuando los investigadores observaron que el algoritmo estaba segmentando incorrectamente las tomografías computarizadas que involucraban los ganglios linfáticos, volvieron a entrenar el modelo con más de estas exploraciones para mejorar su rendimiento.
Finalmente, los investigadores pidieron a ocho oncólogos de radiación que realizaran tareas de segmentación, así como que calificaran y editaran las segmentaciones producidas por otro médico experto o por el algoritmo (no se les dijo cuál). No hubo una diferencia significativa en el rendimiento entre las colaboraciones humano-IA y las segmentaciones producidas por humanos (de novo). Curiosamente, los médicos trabajaron un 65 % más rápido y con un 32 % menos de variación al editar una segmentación producida por IA en comparación con una producida manualmente, aunque no sabían cuál estaban editando. También calificaron la calidad de las segmentaciones dibujadas por IA más alto que las segmentaciones dibujadas por expertos humanos en este estudio ciego.
En el futuro, los investigadores planean combinar este trabajo con modelos de IA que diseñaron previamente que pueden identificar "órganos en riesgo" de recibir radiación no deseada durante el tratamiento del cáncer (como el corazón) y, por lo tanto, excluirlos de la radioterapia. Continúan estudiando cómo los médicos interactúan con la IA para garantizar que las asociaciones con IA ayuden, en lugar de dañar, la práctica clínica, y están desarrollando un segundo algoritmo de segmentación independiente que puede verificar tanto las segmentaciones humanas como las dibujadas por IA.
"La mayor brecha de traducción en las aplicaciones de IA a la medicina es la falta de estudio sobre cómo usar la IA para mejorar a los médicos humanos, y viceversa", dijo el autor correspondiente Raymond Mak, MD, del Departamento de Oncología Radioterápica de Brigham. “Estamos estudiando cómo hacer asociaciones y colaboraciones entre humanos e IA que tengan como efecto mejores resultados para los pacientes. Los beneficios de este enfoque para los pacientes incluyen una mayor consistencia en la segmentación de los tumores y tiempos acelerados de tratamiento. Los beneficios para los médicos incluyen una reducción del trabajo informático mundano pero difícil, lo que puede reducir el agotamiento y aumentar el tiempo que pueden pasar con los pacientes”.
“Este estudio presenta una estrategia de evaluación novedosa para modelos de IA que enfatiza la importancia de la colaboración humano-IA”, agregó el coautor Hugo Aerts, PhD, del Departamento de Oncología Radioterápica. “Esto es especialmente necesario porque las evaluaciones in silico (modeladas por computadora) pueden dar resultados diferentes a las evaluaciones clínicas. Nuestro enfoque puede ayudar a allanar el camino hacia el despliegue clínico".
Últimas Imaginología General noticias
- Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
- El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
- Tecnología innovadora revoluciona imágenes mamarias
- Sistema de última generación mejora la precisión de procedimientos intervencionistas y diagnóstico guiados por imágenes
- Dispositivo basado en catéter con nuevo enfoque de imágenes cardiovasculares ofrece visión sin precedentes de placas peligrosas
- Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas
- Sistema de TC habilitado por IA proporciona resultados de imágenes más precisos y confiables
- Exámenes de TC tórax de rutina pueden identificar pacientes con riesgo de enfermedad cardiovascular
- Software de planificación quirúrgica preoperatoria de RA hace que la cirugía sea más segura y eficiente
- Biopsia virtual impulsada por IA ayuda a evaluar cáncer de pulmón a partir de exploraciones médicas
- Nuevos materiales imprimibles en 3D para cirugía reconstructiva se pueden monitorear mediante rayos X o TC
- TC con conteo de fotones mejora evaluación de enfermedad arterial coronaria
- Nuevo radiotrazador ilumina exploración PET para detección más temprana de enfermedades
- Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón
- Nueva tecnología muestra imágenes del flujo sanguíneo en tiempo real
- Software de IA para análisis de imágenes de TC de tórax permite tratamiento personalizado para pacientes pulmonares
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más