Nuevo algoritmo permite reconstrucción en tiempo real de imágenes que combinan datos ópticos y de RM para mejorar detección de cáncer de mama
Por el equipo editorial de MedImaging en español Actualizado el 03 Mar 2022 |

Los investigadores han desarrollado un nuevo enfoque de reconstrucción de imágenes que podría contribuir a una mejor detección del cáncer de mama.
El algoritmo de aprendizaje profundo desarrollado por un equipo de investigación de Dartmouth College (Hanover, NH, EUA) supera un obstáculo importante en la generación de imágenes multimodal al permitir que las imágenes se recuperen en tiempo real. El nuevo algoritmo, conocido como Z-Net, funciona con una plataforma de imágenes que combina información espectral óptica con imágenes de resonancia magnética (IRM) sin contraste para mejorar la detección del cáncer de mama. El nuevo algoritmo puede distinguir entre tumores malignos y benignos utilizando datos de imágenes de tomografía espectral de infrarrojo cercano (NIRST) guiadas por resonancia magnética de exámenes de mama de pacientes.
Hoy en día, la resonancia magnética mejorada con contraste dinámico (DCE) se reconoce como el método de detección de cáncer de mama más sensible. Sin embargo, la resonancia magnética DCE requiere la inyección intravenosa de un agente de contraste y tiene una tasa sustancial de falsos positivos. Aunque la NIRST guiada por resonancia magnética sin contraste ofrece una alternativa que no requiere inyección de contraste ni radiación ionizante, la reconstrucción de las imágenes combinadas requiere modelos complicados de propagación de la luz, así como un análisis de imágenes de resonancia magnética que requiere mucho tiempo. Los investigadores utilizaron el aprendizaje profundo para acelerar el proceso de reconstrucción de imágenes. El aprendizaje profundo es un enfoque de aprendizaje automático que crea conexiones entre piezas de información de una manera similar a como funciona el cerebro humano, lo que permite a los investigadores entrenar su algoritmo para reconocer patrones y relaciones complejas.
Después de entrenar el algoritmo, los investigadores utilizaron datos simulados para confirmar que la calidad de las imágenes reconstruidas no se degradó al eliminar el modelo de propagación de luz difusa o al no segmentar las imágenes de resonancia magnética. Luego aplicaron el nuevo algoritmo de forma prospectiva a los datos NIRST guiados por resonancia magnética recopilados de dos exámenes de imágenes mamarias, uno que condujo a un diagnóstico de cáncer confirmado por biopsia, el otro resultó en una anomalía benigna. El nuevo algoritmo generó imágenes que podían diferenciar entre los casos malignos y benignos. Los investigadores ahora están trabajando para adaptar el nuevo método de reconstrucción de imágenes para trabajar con datos 3D y planean probarlo en un ensayo clínico más grande en un futuro cercano.
“La tomografía espectral de infrarrojo cercano (NIRST, por sus siglas en inglés) y la plataforma de imágenes por resonancia magnética que desarrollamos se han mostrado prometedoras, pero el tiempo y el esfuerzo involucrados en la reconstrucción de imágenes han impedido que se traduzca en el flujo de trabajo clínico diario”, dijo Keith Paulsen, quien dirigió el equipo de investigación. “Por lo tanto, diseñamos un algoritmo de aprendizaje profundo que incorpora datos de imágenes anatómicas de MRI para guiar la formación de imágenes NIRST sin requerir un modelo complejo de propagación de la luz en el tejido”.
“Z-Net podría permitir que NIRST se convierta en un complemento eficiente y efectivo para la resonancia magnética sin contraste para la detección y el diagnóstico del cáncer de mama porque permite recuperar imágenes NIRST guiadas por resonancia magnética casi en tiempo real”, agregó Paulsen. "También se puede adaptar fácilmente para su uso con otros tipos de cáncer y enfermedades para los que se dispone de datos de imágenes multimodales".
“El algoritmo Z-Net reduce el tiempo necesario para generar una nueva imagen a unos pocos segundos”, dijo Jinchao Feng, autor principal del estudio. “Además, la red de aprendizaje automático que desarrollamos se puede entrenar con datos generados por simulaciones por computadora en lugar de necesitar imágenes de exámenes de pacientes reales, que tardan mucho tiempo en recopilarse y procesarse en información de entrenamiento”.
Enlaces relacionados:
Dartmouth College
Últimas RM noticias
- Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
- La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
- Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
- RMPD ilumina pequeñas lesiones de ovario como bombillas
- Resonancia magnética abreviada de mama eficaz para detección de alto riesgo sin comprometer precisión diagnóstica
- Nuevo método de resonancia magnética detecta enfermedad de Alzheimer antes en personas sin signos clínicos
- Monitorización por resonancia magnética reduce mortalidad en mujeres con alto riesgo de cáncer de mama BRCA1
- Innovadoras imágenes cerebrales cuantitativas basadas en inteligencia artificial en resonancia magnética podrían ser un avance en atención neurológica
- Algoritmo de aprendizaje profundo realiza segmentación automática de cerebros neonatales a partir de imágenes de resonancia magnética
- Imágenes de resonancia magnética de 0,55 T de campo bajo ofrecen utilidad diagnóstica similar a la de 1,5 T para exploraciones abdominales
- Secuencia de resonancia magnética acelerada ayuda a radiólogos a evaluar enfermedades cardíacas sin contener la respiración
- Prueba de resonancia magnética de 60 segundos ayuda a diagnosticar más fácilmente el fallo de derivación en niños con hidrocefalia
- 'Sonda' de resonancia magnética mide de forma no invasiva salud placentaria
- Agentes de imágenes de doble propósito para escáneres PET y de RMN podrían diagnosticar enfermedades neurodegenerativas antes
- Nueva técnica de resonancia magnética permite detección temprana y mejor seguimiento de esclerosis múltiple
- Ultrasonido enfocado de próxima generación guiado por resonancia magnética permite neurocirugía sin incisiones
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más