RSNA anuncia reto de IA para la hemorragia intracraneal
Por el equipo editorial de MedImaging en español Actualizado el 09 Oct 2019 |

Imagen: En el RSNA de este año, los investigadores trabajarán para desarrollar algoritmos que puedan identificar y clasificar subtipos de hemorragias en las tomografías computarizadas de la cabeza (Fotografía cortesía de la RSNA).
La Sociedad Norteamericana de Radiología {(RSNA), Oak Brook, IL, EUA} lanzó su tercer desafío anual de inteligencia artificial (IA): el Desafío de Clasificación y Detección de Hemorragia Intracraneal de la RSNA. El Desafío de IA es una competencia entre investigadores para crear aplicaciones que realicen una tarea definida de acuerdo con medidas de desempeño especificadas.
El desafío de detección de neumonía del año pasado tuvo más de 1.400 equipos. Este año, los investigadores trabajan para desarrollar algoritmos que puedan identificar y clasificar subtipos de hemorragias en las tomografías computarizadas de la cabeza. El conjunto de datos, que comprende más de 25.000 tomografías computarizadas de la cabeza contribuidas por varias instituciones de investigación, es el primer conjunto de datos multiplanar utilizado en un Desafío de IA de la RSNA. El Subcomité de Dirección de Aprendizaje Automático trabajó con especialistas voluntarios de la Sociedad Estadounidense de Neurorradiología (ASNR) para etiquetar estos exámenes en busca de la presencia de cinco subtipos de hemorragia intracraneal, un esfuerzo de alcance sin precedentes en la comunidad radiológica.
El 3 de septiembre, se lanzó la primera ola de datos a los investigadores que trabajan para desarrollar y “entrenar” algoritmos. La fase de capacitación se extiende hasta el 4 de noviembre. Durante esta fase, los participantes utilizarán un conjunto de datos de capacitación que incluye las etiquetas de los radiólogos para desarrollar algoritmos que reproduzcan esas anotaciones. Durante la fase de evaluación, del 4 al 11 de noviembre, los participantes aplicarán sus algoritmos a la parte de prueba del conjunto de datos, que se les proporciona con las anotaciones retenidas. Sus resultados se compararán con las anotaciones en el conjunto de datos de prueba, y se aplicará una métrica de evaluación para calificar su exactitud y determinar los ganadores. Los resultados se anunciarán en noviembre y las presentaciones principales serán reconocidas en el Teatro de Exposiciones de IA durante el congreso anual de la RSNA que se realizará del 1 al 6 de diciembre en el McCormick Place, Chicago, EUA.
“El objetivo de un desafío de IA es explorar y demostrar las formas en que la IA puede beneficiar a la radiología y mejorar el diagnóstico clínico”, dijo Luciano Prevedello, M.D, M.P.H., presidente del Subcomité de Dirección de Aprendizaje Automático del Comité de Informática de Radiología de la RSNA. “Al organizar estos desafíos de datos, la RSNA desempeña un papel fundamental para demostrar las capacidades del aprendizaje automático y fomentar el desarrollo de la inteligencia artificial para mejorar la atención a los pacientes”.
Enlace relacionado:
Sociedad Norteamericana de Radiología
El desafío de detección de neumonía del año pasado tuvo más de 1.400 equipos. Este año, los investigadores trabajan para desarrollar algoritmos que puedan identificar y clasificar subtipos de hemorragias en las tomografías computarizadas de la cabeza. El conjunto de datos, que comprende más de 25.000 tomografías computarizadas de la cabeza contribuidas por varias instituciones de investigación, es el primer conjunto de datos multiplanar utilizado en un Desafío de IA de la RSNA. El Subcomité de Dirección de Aprendizaje Automático trabajó con especialistas voluntarios de la Sociedad Estadounidense de Neurorradiología (ASNR) para etiquetar estos exámenes en busca de la presencia de cinco subtipos de hemorragia intracraneal, un esfuerzo de alcance sin precedentes en la comunidad radiológica.
El 3 de septiembre, se lanzó la primera ola de datos a los investigadores que trabajan para desarrollar y “entrenar” algoritmos. La fase de capacitación se extiende hasta el 4 de noviembre. Durante esta fase, los participantes utilizarán un conjunto de datos de capacitación que incluye las etiquetas de los radiólogos para desarrollar algoritmos que reproduzcan esas anotaciones. Durante la fase de evaluación, del 4 al 11 de noviembre, los participantes aplicarán sus algoritmos a la parte de prueba del conjunto de datos, que se les proporciona con las anotaciones retenidas. Sus resultados se compararán con las anotaciones en el conjunto de datos de prueba, y se aplicará una métrica de evaluación para calificar su exactitud y determinar los ganadores. Los resultados se anunciarán en noviembre y las presentaciones principales serán reconocidas en el Teatro de Exposiciones de IA durante el congreso anual de la RSNA que se realizará del 1 al 6 de diciembre en el McCormick Place, Chicago, EUA.
“El objetivo de un desafío de IA es explorar y demostrar las formas en que la IA puede beneficiar a la radiología y mejorar el diagnóstico clínico”, dijo Luciano Prevedello, M.D, M.P.H., presidente del Subcomité de Dirección de Aprendizaje Automático del Comité de Informática de Radiología de la RSNA. “Al organizar estos desafíos de datos, la RSNA desempeña un papel fundamental para demostrar las capacidades del aprendizaje automático y fomentar el desarrollo de la inteligencia artificial para mejorar la atención a los pacientes”.
Enlace relacionado:
Sociedad Norteamericana de Radiología
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más