Se diseñó un modelo de aprendizaje profundo para prevenir los ciberataques en la imagenología médica
Por el equipo editorial de MedImaging en español Actualizado el 26 Dec 2018 |

Imagen: Una investigación nueva presentada en la RSNA abordó la prevención de los ataques cibernéticos a las imágenes médicas (Fotografía cortesía de RSNA).
Los investigadores presentaron dos estudios nuevos en el reciente congreso anual de la Sociedad Radiológica de América del Norte (RSNA), que abordó el riesgo potencial de ciberataques en imagenología médica.
Los dispositivos de imagenología médica, como las máquinas de rayos X, de mamografía, de resonancia magnética y de tomografía computarizada, desempeñan un papel crucial en el diagnóstico y tratamiento. Dado que estos dispositivos suelen estar conectados a redes de hospitales, pueden ser potencialmente susceptibles a ataques cibernéticos sofisticados, incluidos ataques de ransomware que pueden deshabilitar las máquinas. Debido a su rol crítico en la sala de emergencias, los dispositivos de TC pueden enfrentar el mayor riesgo de ataque cibernético. Los investigadores y los expertos en ciberseguridad han comenzado a examinar formas de mitigar el riesgo de ataques cibernéticos en la imagenología médica antes de que se conviertan en un peligro real.
En el primer estudio presentado en la RSNA 2018, los investigadores de la Universidad Ben-Gurión del Negev identificaron áreas de vulnerabilidad y formas de aumentar la seguridad en los equipos de TC. Demostraron cómo un pirata informático podría pasar por alto los mecanismos de seguridad de una máquina de TC para manipular su comportamiento. Dado que la TC utiliza radiación ionizante, los cambios en la dosis podrían afectar negativamente la calidad de la imagen o, en casos extremos, incluso dañar al paciente. Los investigadores han desarrollado un sistema para la detección de anomalías utilizando varios métodos avanzados de aprendizaje automático y de aprendizaje profundo, con datos de entrenamiento que consisten en comandos reales grabados desde dispositivos reales. El modelo aprende a reconocer los comandos normales y a predecir si un comando nuevo que no se ve es legítimo o no. Si un atacante envía un comando malicioso al dispositivo, el sistema lo detectará y alertará al operador antes de que se ejecute el comando.
“En la fase actual de nuestra investigación, nos centramos en el desarrollo de soluciones para prevenir tales ataques con el fin de proteger los dispositivos médicos”, dijo Tom Mahler, Ph.D., candidato y profesor asistente en la Universidad Ben-Gurión del Negev. “Nuestra solución controla los comandos salientes del dispositivo antes de que se ejecuten y alertará y posiblemente se detendrá, si detecta anomalías”.
“En seguridad cibernética, es mejor tomar el modelo de protección 'cebolla' y construir la protección por capas”, agregó Mahler. “Los esfuerzos anteriores en esta área se han centrado en asegurar la red del hospital. Nuestra solución está orientada a los dispositivos, y nuestro objetivo es ser la última línea de defensa para los dispositivos de imagenología médica”.
En el segundo estudio presentado en la RSNA de este año, un equipo de investigadores suizos examinó la posibilidad de alterar los resultados de las mamografías. Los investigadores entrenaron una red adversarial generativa de ciclo consistente (CycleGAN), un tipo de aplicación de inteligencia artificial, en 680 imágenes mamográficas de 334 pacientes, para convertir imágenes que muestran cáncer en sanas y hacer lo mismo, a la inversa, para las imágenes de control normales. Su objetivo era determinar si un CycleGAN podía insertar o eliminar características específicas del cáncer en las mamografías de una manera realista. Las imágenes se presentaron a tres radiólogos, quienes las revisaron e indicaron si pensaban que las imágenes eran genuinas o modificadas. Ninguno de los radiólogos pudo diferenciar de manera confiable entre las dos.
“Como médicos, es nuestro deber moral proteger primero a nuestros pacientes de cualquier daño”, dijo Anton S. Becker, M.D, residente de radiología en el Hospital Universitario de Zúrich y ETH Zúrich, en Suiza. “Por ejemplo, como radiólogos estamos acostumbrados a proteger a los pacientes de la radiación innecesaria. Cuando las redes neuronales u otros algoritmos inevitablemente encuentran su camino en nuestra rutina clínica, necesitaremos aprender cómo proteger a nuestros pacientes de cualquier efecto secundario no deseado de estos también”.
Enlace relacionado:
Los dispositivos de imagenología médica, como las máquinas de rayos X, de mamografía, de resonancia magnética y de tomografía computarizada, desempeñan un papel crucial en el diagnóstico y tratamiento. Dado que estos dispositivos suelen estar conectados a redes de hospitales, pueden ser potencialmente susceptibles a ataques cibernéticos sofisticados, incluidos ataques de ransomware que pueden deshabilitar las máquinas. Debido a su rol crítico en la sala de emergencias, los dispositivos de TC pueden enfrentar el mayor riesgo de ataque cibernético. Los investigadores y los expertos en ciberseguridad han comenzado a examinar formas de mitigar el riesgo de ataques cibernéticos en la imagenología médica antes de que se conviertan en un peligro real.
En el primer estudio presentado en la RSNA 2018, los investigadores de la Universidad Ben-Gurión del Negev identificaron áreas de vulnerabilidad y formas de aumentar la seguridad en los equipos de TC. Demostraron cómo un pirata informático podría pasar por alto los mecanismos de seguridad de una máquina de TC para manipular su comportamiento. Dado que la TC utiliza radiación ionizante, los cambios en la dosis podrían afectar negativamente la calidad de la imagen o, en casos extremos, incluso dañar al paciente. Los investigadores han desarrollado un sistema para la detección de anomalías utilizando varios métodos avanzados de aprendizaje automático y de aprendizaje profundo, con datos de entrenamiento que consisten en comandos reales grabados desde dispositivos reales. El modelo aprende a reconocer los comandos normales y a predecir si un comando nuevo que no se ve es legítimo o no. Si un atacante envía un comando malicioso al dispositivo, el sistema lo detectará y alertará al operador antes de que se ejecute el comando.
“En la fase actual de nuestra investigación, nos centramos en el desarrollo de soluciones para prevenir tales ataques con el fin de proteger los dispositivos médicos”, dijo Tom Mahler, Ph.D., candidato y profesor asistente en la Universidad Ben-Gurión del Negev. “Nuestra solución controla los comandos salientes del dispositivo antes de que se ejecuten y alertará y posiblemente se detendrá, si detecta anomalías”.
“En seguridad cibernética, es mejor tomar el modelo de protección 'cebolla' y construir la protección por capas”, agregó Mahler. “Los esfuerzos anteriores en esta área se han centrado en asegurar la red del hospital. Nuestra solución está orientada a los dispositivos, y nuestro objetivo es ser la última línea de defensa para los dispositivos de imagenología médica”.
En el segundo estudio presentado en la RSNA de este año, un equipo de investigadores suizos examinó la posibilidad de alterar los resultados de las mamografías. Los investigadores entrenaron una red adversarial generativa de ciclo consistente (CycleGAN), un tipo de aplicación de inteligencia artificial, en 680 imágenes mamográficas de 334 pacientes, para convertir imágenes que muestran cáncer en sanas y hacer lo mismo, a la inversa, para las imágenes de control normales. Su objetivo era determinar si un CycleGAN podía insertar o eliminar características específicas del cáncer en las mamografías de una manera realista. Las imágenes se presentaron a tres radiólogos, quienes las revisaron e indicaron si pensaban que las imágenes eran genuinas o modificadas. Ninguno de los radiólogos pudo diferenciar de manera confiable entre las dos.
“Como médicos, es nuestro deber moral proteger primero a nuestros pacientes de cualquier daño”, dijo Anton S. Becker, M.D, residente de radiología en el Hospital Universitario de Zúrich y ETH Zúrich, en Suiza. “Por ejemplo, como radiólogos estamos acostumbrados a proteger a los pacientes de la radiación innecesaria. Cuando las redes neuronales u otros algoritmos inevitablemente encuentran su camino en nuestra rutina clínica, necesitaremos aprender cómo proteger a nuestros pacientes de cualquier efecto secundario no deseado de estos también”.
Enlace relacionado:
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más