Un algoritmo nuevo de inteligencia artificial aumenta la detección de pólipos en los procedimientos de colonoscopia
Por el equipo editorial de MedImaging en español Actualizado el 05 Dec 2018 |

Imagen: El algoritmo Wision AI resalta los pólipos en el monitor, mejorando la detección (abajo) (Fotografía cortesía de Shanghai Wision AI).
Los investigadores de Shanghai Wision AI Co., Ltd. (Shanghai, China), un desarrollador de algoritmos y sistemas de diagnóstico asistidos por computadora para mejorar la exactitud y efectividad de las imágenes de diagnóstico, han anunciado los resultados de un estudio que valida un algoritmo nuevo de aprendizaje automático para mejorar la detección de pólipos adenomatosos durante la colonoscopia. El algoritmo de IA se basa en la misma arquitectura de red utilizada para desarrollar automóviles de conducción automática y está diseñado para permitir la “conducción automática” en los procedimientos de colonoscopia.
El algoritmo Wision AI se validó en conjuntos de datos grandes, desarrollados prospectivamente, diferentes del conjunto de datos de entrenamiento o recopilados independientemente y que fueron varias veces más grandes que el conjunto de datos de entrenamiento. Este enfoque de validación más riguroso utilizado por Wision AI pretende aumentar el desempeño del algoritmo en entornos clínicos del mundo real.
El algoritmo se desarrolló utilizando 5.545 imágenes (65,5% conteniendo pólipos y 34,5% sin pólipos) a partir de los informes de colonoscopia de 1.290 pacientes. Los endoscopistas experimentados anotaron la presencia de pólipos en todas las imágenes utilizadas en el conjunto de datos de desarrollo, y el algoritmo se validó en cuatro conjuntos de datos independientes: dos conjuntos para análisis de imágenes (A y B) y dos conjuntos para análisis de video (C y D). De acuerdo con los hallazgos clave del estudio, la validación en el conjunto de datos A, que incluyó 27.113 imágenes de pacientes a quienes les practicaron una colonoscopia en el Centro de Endoscopia del Hospital Provincial del Pueblo de Sichuan, encontró una sensibilidad por imagen del 94,4% y una especificidad por imagen del 95,9%. La sensibilidad por imagen en un subconjunto de 1.280 imágenes con pólipos que generalmente son difíciles de detectar, fue de 91,7%.
La validación en el conjunto de datos B, basada en una base de datos pública de 612 imágenes de colonoscopia adquiridas en el Hospital Clinic de Barcelona, encontró una sensibilidad por imagen del 88,2%. El uso de este conjunto de datos permitió la generalización de los datos de validación a una población de pacientes más amplia. La validación en el conjunto de datos C que incluyó una serie de videos de colonoscopia con 138 pólipos, encontró una sensibilidad por imagen del 91,6% entre 60.914 marcos de video y una sensibilidad por pólipo del 100%. La validación en el conjunto de datos D, que contenía 54 videos de colonoscopia sin pólipos, encontró una especificidad por imagen del 95,4% entre 1.072.483 marcos. El tiempo total de procesamiento para cada marco de imagen fue de 76,8 milisegundos, incluido el preprocesamiento y la visualización de los tiempos antes y después de la ejecución del algoritmo de aprendizaje profundo. La implementación en un sistema en tiempo real dio como resultado una tasa de procesamiento de 30 marcos por segundo con las GPU Nvidia Titan X.
Sobre la base de estos hallazgos, los investigadores concluyeron que el sistema automático de detección de pólipos, basado en el aprendizaje profundo, tiene un alto desempeño general tanto en imágenes de colonoscopia como en videos en tiempo real.
“Los resultados de este estudio demuestran el poder de nuestro enfoque riguroso para desarrollar algoritmos de aprendizaje profundo, que utilizan conjuntos de datos distintos para la capacitación y validación, y da como resultado altos niveles de especificidad y sensibilidad que tienen el potencial de mejorar los métodos de cribado de diagnóstico que se conocen por reducir el riesgo de enfermedad, mejorar los resultados de salud y salvar vidas”, dijo JingJia Liu, director ejecutivo de Wision AI.
Enlace relacionado:
Shanghai Wision AI Co., Ltd.
El algoritmo Wision AI se validó en conjuntos de datos grandes, desarrollados prospectivamente, diferentes del conjunto de datos de entrenamiento o recopilados independientemente y que fueron varias veces más grandes que el conjunto de datos de entrenamiento. Este enfoque de validación más riguroso utilizado por Wision AI pretende aumentar el desempeño del algoritmo en entornos clínicos del mundo real.
El algoritmo se desarrolló utilizando 5.545 imágenes (65,5% conteniendo pólipos y 34,5% sin pólipos) a partir de los informes de colonoscopia de 1.290 pacientes. Los endoscopistas experimentados anotaron la presencia de pólipos en todas las imágenes utilizadas en el conjunto de datos de desarrollo, y el algoritmo se validó en cuatro conjuntos de datos independientes: dos conjuntos para análisis de imágenes (A y B) y dos conjuntos para análisis de video (C y D). De acuerdo con los hallazgos clave del estudio, la validación en el conjunto de datos A, que incluyó 27.113 imágenes de pacientes a quienes les practicaron una colonoscopia en el Centro de Endoscopia del Hospital Provincial del Pueblo de Sichuan, encontró una sensibilidad por imagen del 94,4% y una especificidad por imagen del 95,9%. La sensibilidad por imagen en un subconjunto de 1.280 imágenes con pólipos que generalmente son difíciles de detectar, fue de 91,7%.
La validación en el conjunto de datos B, basada en una base de datos pública de 612 imágenes de colonoscopia adquiridas en el Hospital Clinic de Barcelona, encontró una sensibilidad por imagen del 88,2%. El uso de este conjunto de datos permitió la generalización de los datos de validación a una población de pacientes más amplia. La validación en el conjunto de datos C que incluyó una serie de videos de colonoscopia con 138 pólipos, encontró una sensibilidad por imagen del 91,6% entre 60.914 marcos de video y una sensibilidad por pólipo del 100%. La validación en el conjunto de datos D, que contenía 54 videos de colonoscopia sin pólipos, encontró una especificidad por imagen del 95,4% entre 1.072.483 marcos. El tiempo total de procesamiento para cada marco de imagen fue de 76,8 milisegundos, incluido el preprocesamiento y la visualización de los tiempos antes y después de la ejecución del algoritmo de aprendizaje profundo. La implementación en un sistema en tiempo real dio como resultado una tasa de procesamiento de 30 marcos por segundo con las GPU Nvidia Titan X.
Sobre la base de estos hallazgos, los investigadores concluyeron que el sistema automático de detección de pólipos, basado en el aprendizaje profundo, tiene un alto desempeño general tanto en imágenes de colonoscopia como en videos en tiempo real.
“Los resultados de este estudio demuestran el poder de nuestro enfoque riguroso para desarrollar algoritmos de aprendizaje profundo, que utilizan conjuntos de datos distintos para la capacitación y validación, y da como resultado altos niveles de especificidad y sensibilidad que tienen el potencial de mejorar los métodos de cribado de diagnóstico que se conocen por reducir el riesgo de enfermedad, mejorar los resultados de salud y salvar vidas”, dijo JingJia Liu, director ejecutivo de Wision AI.
Enlace relacionado:
Shanghai Wision AI Co., Ltd.
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más