Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

La IA podría ayudar a los radiólogos a mejorar el diagnóstico de la osteoartritis mediante rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 30 Oct 2018
Print article
Imagen: El sistema de clasificación KL para evaluar la gravedad de la OA de rodilla. Un algoritmo nuevo de la UCSF ayudará a detectar la OA usando este sistema (Fotografía cortesía de la Universidad de California, San Francisco).
Imagen: El sistema de clasificación KL para evaluar la gravedad de la OA de rodilla. Un algoritmo nuevo de la UCSF ayudará a detectar la OA usando este sistema (Fotografía cortesía de la Universidad de California, San Francisco).
Investigadores del Centro para la Innovación de la Salud Digital en la Universidad de California (San Francisco, CA, EUA) han desarrollado un algoritmo completamente automatizado para la detección con radiografías de la osteoartritis utilizando el Sistema de clasificación Kellgren Lawrence (KL) 0-4 con una red neuronal de vanguardia.

La clasificación de la osteoartritis en la rodilla se realiza con mayor frecuencia con radiografías que utilizan el sistema de clasificación de 0-4 KL, donde 0 es normal, 1 muestra signos dudosos de osteoartritis, 2 es artrosis leve, 3 es artrosis moderada y 4 es artrosis severa. La clasificación de KL se usa ampliamente para la evaluación clínica y el diagnóstico de osteoartritis, generalmente en un alto volumen de radiografías, lo que hace que su automatización sea de una relevancia muy alta.

Para desarrollar un algoritmo completamente automatizado para la detección de osteoartritis mediante clasificaciones KL con una red neuronal de vanguardia, los investigadores recolectaron 4.490 radiografías de rodilla de flexión fija AP, bilaterales, del conjunto de datos de la Iniciativa de Osteoartritis (edad = 61,2 ± 9,2 años, IMC = 32,8 ± 15,9 kg/m2, división de 42/58 hombres/mujeres) para seis puntos de tiempo diferentes. Las articulaciones de la rodilla izquierda y derecha se localizaron utilizando un modelo de U-net. Estas imágenes localizadas se utilizaron para entrenar un conjunto de arquitecturas de redes neuronales, DenseNet, para la predicción de la gravedad de la osteoartritis.

Los índices de sensibilidad para este conjunto DenseNet sin osteoartritis, artrosis leve, moderada y grave fueron de 83,7; 70,2; 68,9 y 86,0%, respectivamente, mientras que las tasas de especificidad correspondientes fueron de 86,1; 83,8; 97,1 y 99 de 1%. Usando mapas de prominencia, los investigadores confirmaron que las redes neuronales que producen estos resultados estaban, de hecho, seleccionando las características osteoartríticas correctas utilizadas en la detección. Los resultados sugieren que el uso del clasificador automático podría ayudar a los radiólogos a realizar un diagnóstico más exacto y preciso, dado el volumen creciente de las imágenes radiográficas que se toman en las clínicas.

Enlace relacionado:
Universidad de California

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Forensic Imaging System
EXERO-DR
Miembro Oro
UGPIV Barrier and Securement
UltraDrape II

Print article
Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más