Los científicos usan el aprendizaje automático y los exámenes de resonancia magnética para predecir las dificultades de aprendizaje
Por el equipo editorial de MedImaging en español Actualizado el 17 Oct 2018 |
Un equipo de científicos de la Unidad de Cognición y Ciencias del Cerebro del Consejo de Investigación Médica (MRC) de la Universidad de Cambridge (Cambridge, Inglaterra, Reino Unido) utilizó el aprendizaje automático, un tipo de inteligencia artificial, con datos de cientos de niños que luchan en la escuela para identificar grupos de dificultades de aprendizaje, que no coinciden con su diagnóstico anterior. Según los investigadores, esto refuerza la necesidad de que los niños reciban evaluaciones detalladas de sus habilidades cognitivas para identificar el mejor tipo de apoyo.
Para el estudio, los investigadores reclutaron a 550 niños que habían sido remitidos a una clínica porque tenían dificultades en la escuela. Las investigaciones anteriores sobre las dificultades de aprendizaje se habían centrado en niños a los que ya se les había diagnosticado una dificultad particular, como el trastorno por déficit de atención con hiperactividad (TDAH), un trastorno del espectro autista o dislexia. El último estudio incluyó a niños con todas las dificultades, independientemente de su diagnóstico, para capturar mejor el rango de dificultades entre ellas y la superposición de las categorías de diagnóstico.
Los investigadores aplicaron el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades al proporcionarle al algoritmo informático una gran cantidad de datos de pruebas cognitivas de cada niño, incluidas las medidas de audición, el razonamiento espacial, la resolución de problemas, el vocabulario y la memoria. Basado en estos datos, el algoritmo sugirió que los niños encajan mejor en cuatro grupos de dificultades. Estos grupos se alinearon estrechamente con otros datos sobre los niños, como los informes de los padres sobre sus dificultades de comunicación y los datos educativos sobre lectura y matemáticas.
Sin embargo, no hubo correspondencia con sus diagnósticos previos. Con el fin de verificar si estas agrupaciones correspondían a diferencias biológicas, los grupos se verificaron en las resonancias magnéticas cerebrales de 184 niños. Las agrupaciones reflejaban patrones de conectividad en partes del cerebro de los niños, lo que sugiere que el aprendizaje automático identificaba diferencias que reflejan en parte la biología subyacente. Dos de los cuatro grupos identificados fueron: dificultades con las habilidades de memoria de trabajo y dificultades con el procesamiento de sonidos en palabras. Los otros dos grupos identificados fueron: niños con amplias dificultades cognitivas en muchas áreas, y niños con resultados de pruebas cognitivas típicas para su edad. Los investigadores notaron que los niños en la agrupación que tenían resultados de pruebas cognitivas que eran típicos para su edad podían tener, en todo caso, otras dificultades que afectaban su escolarización, como las dificultades de comportamiento, que no se habían incluido en el aprendizaje automático.
"Nuestro estudio es el primero de su tipo en aplicar el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades", dijo el Dr. Duncan Astle, de la Unidad de Cognición y Ciencias del Cerebro del MRC en la Universidad de Cambridge, quien dirigió el estudio.
"Estos son hallazgos interesantes en una etapa temprana que comienzan a investigar cómo podemos aplicar nuevas tecnologías, como el aprendizaje automático, para comprender mejor la función cerebral", dijo la Dra. Joanna Latimer, Directora de Neurociencias y Salud Mental del MRC.
Enlace relacionado:
Universidad de Cambridge
Para el estudio, los investigadores reclutaron a 550 niños que habían sido remitidos a una clínica porque tenían dificultades en la escuela. Las investigaciones anteriores sobre las dificultades de aprendizaje se habían centrado en niños a los que ya se les había diagnosticado una dificultad particular, como el trastorno por déficit de atención con hiperactividad (TDAH), un trastorno del espectro autista o dislexia. El último estudio incluyó a niños con todas las dificultades, independientemente de su diagnóstico, para capturar mejor el rango de dificultades entre ellas y la superposición de las categorías de diagnóstico.
Los investigadores aplicaron el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades al proporcionarle al algoritmo informático una gran cantidad de datos de pruebas cognitivas de cada niño, incluidas las medidas de audición, el razonamiento espacial, la resolución de problemas, el vocabulario y la memoria. Basado en estos datos, el algoritmo sugirió que los niños encajan mejor en cuatro grupos de dificultades. Estos grupos se alinearon estrechamente con otros datos sobre los niños, como los informes de los padres sobre sus dificultades de comunicación y los datos educativos sobre lectura y matemáticas.
Sin embargo, no hubo correspondencia con sus diagnósticos previos. Con el fin de verificar si estas agrupaciones correspondían a diferencias biológicas, los grupos se verificaron en las resonancias magnéticas cerebrales de 184 niños. Las agrupaciones reflejaban patrones de conectividad en partes del cerebro de los niños, lo que sugiere que el aprendizaje automático identificaba diferencias que reflejan en parte la biología subyacente. Dos de los cuatro grupos identificados fueron: dificultades con las habilidades de memoria de trabajo y dificultades con el procesamiento de sonidos en palabras. Los otros dos grupos identificados fueron: niños con amplias dificultades cognitivas en muchas áreas, y niños con resultados de pruebas cognitivas típicas para su edad. Los investigadores notaron que los niños en la agrupación que tenían resultados de pruebas cognitivas que eran típicos para su edad podían tener, en todo caso, otras dificultades que afectaban su escolarización, como las dificultades de comportamiento, que no se habían incluido en el aprendizaje automático.
"Nuestro estudio es el primero de su tipo en aplicar el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades", dijo el Dr. Duncan Astle, de la Unidad de Cognición y Ciencias del Cerebro del MRC en la Universidad de Cambridge, quien dirigió el estudio.
"Estos son hallazgos interesantes en una etapa temprana que comienzan a investigar cómo podemos aplicar nuevas tecnologías, como el aprendizaje automático, para comprender mejor la función cerebral", dijo la Dra. Joanna Latimer, Directora de Neurociencias y Salud Mental del MRC.
Enlace relacionado:
Universidad de Cambridge
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más