Los investigadores desarrollan un algoritmo de IA para predecir la respuesta a la inmunoterapia
Por el equipo editorial de MedImaging en español Actualizado el 19 Sep 2018 |
Un equipo de investigadores franceses diseñó un algoritmo y lo desarrolló para analizar imágenes de exámenes de tomografía computarizada (TC), estableciendo por primera vez que la inteligencia artificial (IA) puede procesar imágenes médicas para extraer información biológica y clínica. Los investigadores han creado la denominada firma radiómica, que define el nivel de infiltración linfocitaria de un tumor y proporciona una puntuación predictiva de la eficacia de la inmunoterapia en el paciente.
En un futuro cercano, esto podría permitir a los médicos utilizar imágenes para identificar fenómenos biológicos en un tumor localizado en cualquier parte del cuerpo sin tener que realizar una biopsia.
Actualmente, no hay marcadores que puedan identificar con exactitud a los pacientes que responderán a la inmunoterapia anti-PD-1/PD-L1, en una situación en la que solo entre el 15 y el 30% de los pacientes responden a dicho tratamiento. Cuanto más más rico sea inmunológicamente el entorno tumoral (presencia de linfocitos), mayores serán las posibilidades de que la inmunoterapia sea efectiva. Por lo tanto, los investigadores trataron de caracterizar este entorno utilizando métodos de imagenología y correlacionaron esto con la respuesta clínica de los pacientes. En su estudio, la firma radiómica fue capturada, desarrollada y validada genómica, histológica y clínicamente en 500 pacientes con tumores sólidos (de todos los sitios) de cuatro cohortes independientes.
Los investigadores primero usaron un método basado en el aprendizaje automático para enseñar al algoritmo cómo usar información relevante extraída de tomografías computarizadas de pacientes que participaron en un estudio anterior, que también contenía datos del genoma tumoral. Por lo tanto, con base únicamente en las imágenes, el algoritmo aprendió a predecir qué podría haber revelado el genoma sobre el infiltrado inmune tumoral, en particular con respecto a la presencia de linfocitos T citotóxicos (CD8) en el tumor, estableciendo así una firma radiómica.
Los investigadores ensayaron y validaron esta firma en otras cohortes, incluida la del Atlas del Genoma del Cáncer (TCGA, por su sigla en inglés), lo que demuestra que las imágenes podrían predecir un fenómeno biológico y proporcionar una estimación del grado de infiltración inmune de un tumor. Además, para probar la aplicabilidad de la firma en una situación real y correlacionarla con la eficacia de la inmunoterapia, la evaluaron mediante tomografías computarizadas realizadas antes del inicio del tratamiento en pacientes que participaban en cinco ensayos de fase I de inmunoterapia con anti-PD-1/PD-L1. Los investigadores encontraron que los pacientes en quienes la inmunoterapia fue efectiva a los tres y seis meses tenían puntajes radiómicos más altos al igual que los que tenían una mejor supervivencia general.
En su próximo estudio clínico, los investigadores evaluarán la firma de forma retrospectiva y prospectiva, utilizando un mayor número de pacientes y estratificándolos según el tipo de cáncer con el fin de refinar la firma. También utilizarán aprendizaje automático más sofisticado y algoritmos de IA para predecir la respuesta del paciente a la inmunoterapia, al tiempo que integran datos de las imágenes, la biología molecular y el análisis de tejidos. Los investigadores tienen como objetivo identificar a aquellos pacientes que tienen más probabilidades de responder al tratamiento, mejorando así la relación eficacia/costo del tratamiento.
Enlace relacionado:
En un futuro cercano, esto podría permitir a los médicos utilizar imágenes para identificar fenómenos biológicos en un tumor localizado en cualquier parte del cuerpo sin tener que realizar una biopsia.
Actualmente, no hay marcadores que puedan identificar con exactitud a los pacientes que responderán a la inmunoterapia anti-PD-1/PD-L1, en una situación en la que solo entre el 15 y el 30% de los pacientes responden a dicho tratamiento. Cuanto más más rico sea inmunológicamente el entorno tumoral (presencia de linfocitos), mayores serán las posibilidades de que la inmunoterapia sea efectiva. Por lo tanto, los investigadores trataron de caracterizar este entorno utilizando métodos de imagenología y correlacionaron esto con la respuesta clínica de los pacientes. En su estudio, la firma radiómica fue capturada, desarrollada y validada genómica, histológica y clínicamente en 500 pacientes con tumores sólidos (de todos los sitios) de cuatro cohortes independientes.
Los investigadores primero usaron un método basado en el aprendizaje automático para enseñar al algoritmo cómo usar información relevante extraída de tomografías computarizadas de pacientes que participaron en un estudio anterior, que también contenía datos del genoma tumoral. Por lo tanto, con base únicamente en las imágenes, el algoritmo aprendió a predecir qué podría haber revelado el genoma sobre el infiltrado inmune tumoral, en particular con respecto a la presencia de linfocitos T citotóxicos (CD8) en el tumor, estableciendo así una firma radiómica.
Los investigadores ensayaron y validaron esta firma en otras cohortes, incluida la del Atlas del Genoma del Cáncer (TCGA, por su sigla en inglés), lo que demuestra que las imágenes podrían predecir un fenómeno biológico y proporcionar una estimación del grado de infiltración inmune de un tumor. Además, para probar la aplicabilidad de la firma en una situación real y correlacionarla con la eficacia de la inmunoterapia, la evaluaron mediante tomografías computarizadas realizadas antes del inicio del tratamiento en pacientes que participaban en cinco ensayos de fase I de inmunoterapia con anti-PD-1/PD-L1. Los investigadores encontraron que los pacientes en quienes la inmunoterapia fue efectiva a los tres y seis meses tenían puntajes radiómicos más altos al igual que los que tenían una mejor supervivencia general.
En su próximo estudio clínico, los investigadores evaluarán la firma de forma retrospectiva y prospectiva, utilizando un mayor número de pacientes y estratificándolos según el tipo de cáncer con el fin de refinar la firma. También utilizarán aprendizaje automático más sofisticado y algoritmos de IA para predecir la respuesta del paciente a la inmunoterapia, al tiempo que integran datos de las imágenes, la biología molecular y el análisis de tejidos. Los investigadores tienen como objetivo identificar a aquellos pacientes que tienen más probabilidades de responder al tratamiento, mejorando así la relación eficacia/costo del tratamiento.
Enlace relacionado:
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más