Modelo de aprendizaje automático utiliza datos de resonancia magnética para identificar candidatos para trasplante de hígado
Por el equipo editorial de MedImaging en español Actualizado el 23 Aug 2022 |

La recurrencia posterior al tratamiento es una complicación impredecible después del trasplante de hígado por carcinoma hepatocelular (CHC), que se asocia con una supervivencia deficiente. Se necesitan biomarcadores para estimar el riesgo de recurrencia antes de la asignación de órganos. Un nuevo estudio ha encontrado que los modelos de aprendizaje automático (ML) aplicados a las características de imágenes actualmente infrautilizadas podrían ayudar a construir criterios más confiables para la asignación de órganos y la elegibilidad para trasplantes de hígado.
En el estudio de prueba de concepto, los investigadores de la Facultad de Medicina de la Universidad de Yale (New Haven, CT, EUA) evaluaron el uso de (ML para predecir la recurrencia a partir de datos de laboratorio, clínicos y de resonancia magnética previos al tratamiento en pacientes con CHC en etapa temprana inicialmente elegibles para trasplante de hígado. El estudio incluyó a 120 pacientes (88 hombres, 32 mujeres; mediana de edad, 60 años) diagnosticados con CHC en etapa temprana entre junio de 2005 y marzo de 2018, que inicialmente eran elegibles para trasplante de hígado y se sometieron a tratamiento mediante trasplante, resección o ablación térmica. Los pacientes se sometieron a una resonancia magnética previa al tratamiento y a la vigilancia por imágenes posterior al tratamiento, y las características de las imágenes se extrajeron de las fases posteriores al contraste de los exámenes de resonancia magnética previa al tratamiento utilizando una red neuronal convolucional preentrenada (VGG-16). Las características previas al tratamiento (incluyendo los datos de laboratorio) y las características de imágenes extraídas se integraron para desarrollar tres modelos de aprendizaje automático (clínico, de imágenes, combinado) para la predicción de recurrencia dentro de 1 a 6 años después del tratamiento.
En última instancia, los tres modelos predijeron la recurrencia posterior al tratamiento para el CHC en etapa temprana de la clínica previa al tratamiento (AUC 0,60–0,78, en los seis marcos de tiempo), resonancia magnética (AUC 0,71–0,85) y ambos datos combinados (AUC 0,62–0,86). El uso de datos de imágenes como la única entrada del modelo produjo un mayor rendimiento predictivo que los datos clínicos solos; sin embargo, la combinación de ambos tipos de datos no mejoró significativamente el rendimiento con respecto al uso exclusivo de datos de imágenes.
"Los hallazgos sugieren que los modelos basados en el aprendizaje automático pueden predecir la recurrencia antes de la asignación de la terapia en pacientes con CHC en etapa temprana inicialmente elegibles para un trasplante de hígado", escribió el autor correspondiente Julius Chapiro del departamento de radiología e imágenes biomédicas de la Facultad de Medicina de la Universidad de Yale.
Enlaces relacionados:
Facultad de Medicina de la Universidad de Yale
Últimas RM noticias
- Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
- La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
- Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
- RMPD ilumina pequeñas lesiones de ovario como bombillas
- Resonancia magnética abreviada de mama eficaz para detección de alto riesgo sin comprometer precisión diagnóstica
- Nuevo método de resonancia magnética detecta enfermedad de Alzheimer antes en personas sin signos clínicos
- Monitorización por resonancia magnética reduce mortalidad en mujeres con alto riesgo de cáncer de mama BRCA1
- Innovadoras imágenes cerebrales cuantitativas basadas en inteligencia artificial en resonancia magnética podrían ser un avance en atención neurológica
- Algoritmo de aprendizaje profundo realiza segmentación automática de cerebros neonatales a partir de imágenes de resonancia magnética
- Imágenes de resonancia magnética de 0,55 T de campo bajo ofrecen utilidad diagnóstica similar a la de 1,5 T para exploraciones abdominales
- Secuencia de resonancia magnética acelerada ayuda a radiólogos a evaluar enfermedades cardíacas sin contener la respiración
- Prueba de resonancia magnética de 60 segundos ayuda a diagnosticar más fácilmente el fallo de derivación en niños con hidrocefalia
- 'Sonda' de resonancia magnética mide de forma no invasiva salud placentaria
- Agentes de imágenes de doble propósito para escáneres PET y de RMN podrían diagnosticar enfermedades neurodegenerativas antes
- Nueva técnica de resonancia magnética permite detección temprana y mejor seguimiento de esclerosis múltiple
- Ultrasonido enfocado de próxima generación guiado por resonancia magnética permite neurocirugía sin incisiones
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más