Imagenología óptica con ultrasonido podría reemplazar la endoscopia
Por el equipo editorial de MedImaging en español Actualizado el 06 Aug 2019 |

Imagen: Pronto se podría usar el ultrasonido para suministrar imágenes ópticas de las estructuras internas (Fotografía cortesía de Maysam Chamanzar/ CMU).
Un estudio nuevo sugiere que se podría usar el ultrasonido para obtener imágenes de los órganos internos ópticamente, eliminando potencialmente la necesidad de exámenes visuales invasivos usando cámaras endoscópicas.
Desarrollado por investigadores en la Universidad Carnegie Mellon (CMU; Pittsburgh, PA, EUA), la nueva técnica utiliza patrones de ondas ultrasónicas para cambiar la densidad local de los tejidos a fin de crear un patrón de índice de refracción graduado en la dirección de la propagación de la luz, que modula la fase frontal de la luz. Por lo tanto, hace que se enfoque dentro del medio, creando de manera efectiva un transmisor de lente de índice de gradiente virtual (GRIN). La lente GRIN virtual se puede mover simplemente reconfigurando los patrones de ondas de ultrasonido desde el exterior del cuerpo, lo que permite obtener imágenes de diferentes regiones objetivo, todo de una forma no invasiva.
La distancia focal y la apertura numérica de la lente GRIN óptica esculpida, también se pueden ajustar cambiando los parámetros de la onda ultrasónica. Los investigadores demuestran que la lente virtual GRIN puede resolver pequeñas características (22 µm), incluso a través de un medio turbio (que normalmente es opaco), escaneando continuamente a una profundidad de 5,4 mm en el medio modulado. Los investigadores afirman que la tecnología se podría implementar eventualmente en forma de un dispositivo portátil o un parche de superficie portátil que obtenga imágenes del cerebro o de debajo de la piel. El estudio fue publicado el 17 de julio de 2019 en la revista Light: Science and Applications.
“Ser capaz de transmitir imágenes de órganos como el cerebro sin la necesidad de insertar componentes ópticos físicos proporcionará una alternativa importante a la implantación de endoscopios invasivos en el cuerpo”, dijo el coautor principal, Maysam Chamanzar, PhD. “Utilizamos ondas de ultrasonido para esculpir una lente de retransmisión óptica virtual dentro de un medio objetivo dado que, por ejemplo, puede ser tejido biológico. Por lo tanto, el tejido se convierte en una lente que nos ayuda a capturar y transmitir las imágenes de las estructuras más profundas. Este método puede revolucionar el campo de las imágenes biomédicas”.
“Los medios turbios siempre se han considerado obstáculos para las imágenes ópticas, pero hemos demostrado que dichos medios se pueden convertir en aliados para ayudar a que la luz alcance el objetivo deseado”, dijo el coautor principal, el estudiante de doctorado, Matteo Giuseppe Scopelliti, MSc. “Cuando activamos el ultrasonido con el patrón apropiado, el medio turbio se vuelve transparente inmediatamente. Es emocionante pensar en el impacto potencial de este método en una amplia gama de campos, desde aplicaciones biomédicas hasta visión por computadora”.
Las lentes GRIN no requieren un espacio de aire para funcionar, ya que el funcionamiento de la lente se debe a índices variables en la lente misma, en lugar de la diferencia en los índices de refracción entre el aire y la lente. Además, en una lente GRIN, todas las rutas ópticas son las mismas debido al índice de refracción que varía radialmente, en contraste con una lente esférica o asférica.
Enlace relacionado:
Universidad Carnegie Mellon
Desarrollado por investigadores en la Universidad Carnegie Mellon (CMU; Pittsburgh, PA, EUA), la nueva técnica utiliza patrones de ondas ultrasónicas para cambiar la densidad local de los tejidos a fin de crear un patrón de índice de refracción graduado en la dirección de la propagación de la luz, que modula la fase frontal de la luz. Por lo tanto, hace que se enfoque dentro del medio, creando de manera efectiva un transmisor de lente de índice de gradiente virtual (GRIN). La lente GRIN virtual se puede mover simplemente reconfigurando los patrones de ondas de ultrasonido desde el exterior del cuerpo, lo que permite obtener imágenes de diferentes regiones objetivo, todo de una forma no invasiva.
La distancia focal y la apertura numérica de la lente GRIN óptica esculpida, también se pueden ajustar cambiando los parámetros de la onda ultrasónica. Los investigadores demuestran que la lente virtual GRIN puede resolver pequeñas características (22 µm), incluso a través de un medio turbio (que normalmente es opaco), escaneando continuamente a una profundidad de 5,4 mm en el medio modulado. Los investigadores afirman que la tecnología se podría implementar eventualmente en forma de un dispositivo portátil o un parche de superficie portátil que obtenga imágenes del cerebro o de debajo de la piel. El estudio fue publicado el 17 de julio de 2019 en la revista Light: Science and Applications.
“Ser capaz de transmitir imágenes de órganos como el cerebro sin la necesidad de insertar componentes ópticos físicos proporcionará una alternativa importante a la implantación de endoscopios invasivos en el cuerpo”, dijo el coautor principal, Maysam Chamanzar, PhD. “Utilizamos ondas de ultrasonido para esculpir una lente de retransmisión óptica virtual dentro de un medio objetivo dado que, por ejemplo, puede ser tejido biológico. Por lo tanto, el tejido se convierte en una lente que nos ayuda a capturar y transmitir las imágenes de las estructuras más profundas. Este método puede revolucionar el campo de las imágenes biomédicas”.
“Los medios turbios siempre se han considerado obstáculos para las imágenes ópticas, pero hemos demostrado que dichos medios se pueden convertir en aliados para ayudar a que la luz alcance el objetivo deseado”, dijo el coautor principal, el estudiante de doctorado, Matteo Giuseppe Scopelliti, MSc. “Cuando activamos el ultrasonido con el patrón apropiado, el medio turbio se vuelve transparente inmediatamente. Es emocionante pensar en el impacto potencial de este método en una amplia gama de campos, desde aplicaciones biomédicas hasta visión por computadora”.
Las lentes GRIN no requieren un espacio de aire para funcionar, ya que el funcionamiento de la lente se debe a índices variables en la lente misma, en lugar de la diferencia en los índices de refracción entre el aire y la lente. Además, en una lente GRIN, todas las rutas ópticas son las mismas debido al índice de refracción que varía radialmente, en contraste con una lente esférica o asférica.
Enlace relacionado:
Universidad Carnegie Mellon
Últimas Ultrasonido noticias
- Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
- Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
- Tecnología de imágenes por ultrasonido permite a médicos observar actividad de médula espinal durante cirugía
- Pegatinas de ultrasonido que cambian de forma detectan complicaciones postoperatorias
- Técnica de ultrasonido no invasivo ayuda a identificar complicaciones que cambian la vida después de una cirugía de cuello
- Plataforma de ultrasonido remoto ofrece exploraciones diagnósticas desde cualquier lugar
- Ultrasonido enfocado abre temporalmente la barrera hematoencefálica para permitir pruebas de ADN para tumores cerebrales
- Imágenes intravasculares mejoran significativamente resultados en procedimientos de colocación de stent cardiovascular
- Pegatina de ultrasonido portátil ayuda a identificar primeros signos de insuficiencia hepática aguda
- Primeros comandos de voz de su tipo agregados a sistemas de ultrasonido POC permiten operación a manos libres
- Ecografía detecta problemas de placenta en bebés pequeños
- Transductor de ultrasonido en forma de píldora podría beneficiar a pacientes pediátricos y adultos mayores
- Aprendizaje profundo mejora interpretación de ecografía de pulmón
- Ultrasonido de baja frecuencia mejora saturación de oxígeno en sangre
- Nueva técnica de ultrasonido ayuda a predecir riesgo de partos prematuros
- Ultrasonido focalizado se puede utilizar para administrar medicamentos a lesiones cerebrales quirúrgicamente inaccesibles
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
Ion Beam Applications SA (IBA, Louvain-La-Neuve, Bélgica), líder mundial en tecnología de aceleradores de partículas y proveedor líder mundial de soluciones de dosimetría... Más
Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
La inteligencia artificial (IA) tiene el potencial de alterar significativamente el campo de la radiología, presentando tanto oportunidades como desafíos. Su integración podría... Más