Google muestra que la IA puede predecir el cáncer de pulmón a partir de los exámenes de TC
Por el equipo editorial de MedImaging en español Actualizado el 12 Jun 2019 |
Google LLC (Mountain View, CA, EUA) ha compartido nuevas investigaciones que demuestran cómo la inteligencia artificial (IA) puede predecir el cáncer de pulmón con el fin de aumentar las posibilidades de supervivencia de las personas en riesgo en todo el mundo.
Desde 2017, Google ha explorado cómo se puede usar la IA para abordar los desafíos en la detección de personas con alto riesgo de cáncer de pulmón con una prueba de TC de dosis más baja que lleva a diagnósticos poco claros, procedimientos innecesarios posteriores y costos financieros. Google utilizó los avances en el modelado volumétrico en 3D junto con los conjuntos de datos de sus socios para modelar la predicción del cáncer de pulmón y sentar las bases para pruebas clínicas futuras.
En general, los radiólogos pasan por cientos de imágenes en 2D en una sola tomografía computarizada, y el cáncer es minúsculo y difícil de detectar. Los investigadores de Google crearon un modelo que puede generar la predicción general de malignidad del cáncer de pulmón (visto en volumen en 3D), así como identificar tejido maligno sutil en los pulmones (nódulos pulmonares). El modelo también puede tener en cuenta la información de exploraciones anteriores, que puede ser útil para predecir el riesgo de cáncer de pulmón, dado que la tasa de crecimiento de los nódulos pulmonares sospechosos puede ser un indicador de malignidad.
Los investigadores aprovecharon 45.856 casos de cribado con TAC de tórax sin identificación y validaron los resultados con un segundo conjunto de datos y también compararon sus resultados con seis radiólogos certificados de los EUA. Descubrieron que cuando utilizaban una única tomografía computarizada para el diagnóstico, su modelo funcionó a la par o mejor que los seis radiólogos y detectó un 5% más de casos de cáncer, al tiempo que reducía los exámenes falsos positivos en más del 11% en comparación con los radiólogos no ayudados que participaron en el estudio. El enfoque de Google logró un AUC (una métrica común utilizada en el aprendizaje automático que proporciona una medida agregada para el desempeño de clasificación) de 94,4%.
La investigación de Google demuestra que solo el 2-4% de los pacientes elegibles en los Estados Unidos son evaluados para detectar el cáncer de pulmón, demostrando la posibilidad de que la IA aumente la exactitud y la consistencia, ayudando a acelerar la adopción del cribado para el cáncer de pulmón a nivel mundial. Google ahora planea realizar estudios adicionales para evaluar su impacto y utilidad en la práctica clínica. Colabora con el equipo de Google Cloud Healthcare y de Life Sciences para servir el modelo a través de la API de Cloud Healthcare y mantiene conversaciones con sus socios en todo el mundo con el fin de continuar la validación de la investigación adicional y el despliegue.
Enlace relacionado:
Google LLC
Desde 2017, Google ha explorado cómo se puede usar la IA para abordar los desafíos en la detección de personas con alto riesgo de cáncer de pulmón con una prueba de TC de dosis más baja que lleva a diagnósticos poco claros, procedimientos innecesarios posteriores y costos financieros. Google utilizó los avances en el modelado volumétrico en 3D junto con los conjuntos de datos de sus socios para modelar la predicción del cáncer de pulmón y sentar las bases para pruebas clínicas futuras.
En general, los radiólogos pasan por cientos de imágenes en 2D en una sola tomografía computarizada, y el cáncer es minúsculo y difícil de detectar. Los investigadores de Google crearon un modelo que puede generar la predicción general de malignidad del cáncer de pulmón (visto en volumen en 3D), así como identificar tejido maligno sutil en los pulmones (nódulos pulmonares). El modelo también puede tener en cuenta la información de exploraciones anteriores, que puede ser útil para predecir el riesgo de cáncer de pulmón, dado que la tasa de crecimiento de los nódulos pulmonares sospechosos puede ser un indicador de malignidad.
Los investigadores aprovecharon 45.856 casos de cribado con TAC de tórax sin identificación y validaron los resultados con un segundo conjunto de datos y también compararon sus resultados con seis radiólogos certificados de los EUA. Descubrieron que cuando utilizaban una única tomografía computarizada para el diagnóstico, su modelo funcionó a la par o mejor que los seis radiólogos y detectó un 5% más de casos de cáncer, al tiempo que reducía los exámenes falsos positivos en más del 11% en comparación con los radiólogos no ayudados que participaron en el estudio. El enfoque de Google logró un AUC (una métrica común utilizada en el aprendizaje automático que proporciona una medida agregada para el desempeño de clasificación) de 94,4%.
La investigación de Google demuestra que solo el 2-4% de los pacientes elegibles en los Estados Unidos son evaluados para detectar el cáncer de pulmón, demostrando la posibilidad de que la IA aumente la exactitud y la consistencia, ayudando a acelerar la adopción del cribado para el cáncer de pulmón a nivel mundial. Google ahora planea realizar estudios adicionales para evaluar su impacto y utilidad en la práctica clínica. Colabora con el equipo de Google Cloud Healthcare y de Life Sciences para servir el modelo a través de la API de Cloud Healthcare y mantiene conversaciones con sus socios en todo el mundo con el fin de continuar la validación de la investigación adicional y el despliegue.
Enlace relacionado:
Google LLC
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más