Un sistema nuevo de IA puede diagnosticar y clasificar la hemorragia intracraneal
Por el equipo editorial de MedImaging en español Actualizado el 29 Jan 2019 |

Imagen: Estas imágenes muestran la capacidad del sistema para explicar su diagnóstico de hemorragia subaracnoidea (izquierda arriba) e intraventricular (izquierda abajo) al mostrar imágenes con apariencias similares (derecha) de un atlas de imágenes utilizadas para entrenar el sistema (Fotografía cortesía de Hyunkwang Lee, Facultad de Ingeniería y Ciencias Aplicadas de Harvard, y Sehyo Yune, MD, Departamento de Radiología del Hospital General de Massachusetts).
Investigadores del Hospital General de Massachusetts (Boston, MA, EUA) desarrollaron un sistema de inteligencia artificial (IA) que puede diagnosticar y clasificar hemorragias cerebrales rápidamente, así como proporcionar la base de sus decisiones de un conjunto de datos de imágenes relativamente pequeño. El sistema podría ayudar a los servicios de urgencias de los hospitales a evaluar a los pacientes con síntomas de un accidente cerebrovascular potencialmente mortal, permitiendo una rápida aplicación del tratamiento correcto.
Los investigadores entrenaron el sistema con 904 tomografías computarizadas de la cabeza, cada una de ellas consistiendo en alrededor de 40 imágenes individuales, que fueron etiquetadas por los neurorradiólogos en cuanto a si representaban uno de los cinco subtipos de hemorragia, según la ubicación dentro del cerebro o sin hemorragia. El equipo mejoró la exactitud del sistema de aprendizaje profundo incorporando pasos que imitan la forma en que los radiólogos analizan las imágenes. Estos incluyen factores de ajuste como el contraste y el brillo para revelar diferencias sutiles que no son evidentes de inmediato y el desplazamiento a través de los cortes de tomografía computarizada adyacentes, para determinar si algo que aparece en una imagen refleja un problema real o es un artefacto sin sentido.
Después de que se creó el sistema modelo, los investigadores lo probaron en dos conjuntos separados de tomografías computarizadas: un conjunto retrospectivo tomado antes del desarrollo del sistema, que consiste en 100 exploraciones con hemorragia intracraneal y 100 sin esta condición, y una serie prospectiva de 79 exámenes con y 117 exámenes sin hemorragia intracraneal, tomadas después de creado el modelo. En su análisis del conjunto retrospectivo, el sistema modelo fue tan exacto para la detección y clasificación de las hemorragias intracraneales como lo habían sido los radiólogos que habían revisado las imágenes de los exámenes. En su análisis del conjunto prospectivo, el sistema demostró ser incluso mejor que los lectores humanos no expertos.
Para resolver el problema de la “caja negra” o la incapacidad de los sistemas para explicar cómo llegaron a una decisión, el equipo hizo que el sistema revisara y guardara las imágenes del conjunto de datos de entrenamiento que representaban más claramente las características clásicas de cada uno de los cinco subtipos de hemorragias. Usando este atlas de características distintivas, el sistema puede mostrar un grupo de imágenes similares a las de la exploración por TAC, que se analiza para explicar la razón de sus decisiones.
“El rápido reconocimiento de la hemorragia intracraneal, conduciendo a un tratamiento adecuado e inmediato de los pacientes con síntomas agudos de accidente cerebrovascular, puede prevenir o mitigar una discapacidad grave o la muerte”, dijo el coautor Michael Lev, MD, del departamento de radiología del MGH. “Muchas instalaciones no tienen acceso a neurorradiólogos especialmente capacitados, en particular de noche o durante los fines de semana, lo que puede requerir que proveedores no expertos determinen si una hemorragia es la causa de los síntomas de un paciente. La disponibilidad de una “segunda opinión virtual” confiable, entrenada por neurorradiólogos, podría hacer que esos proveedores sean más eficientes y seguros y ayudar a asegurar que los pacientes reciban el tratamiento correcto”.
“Además de proporcionar, la tan necesaria segunda opinión virtual, este sistema también se podría implementar directamente en los escáneres, alertando al equipo de atención sobre la presencia de una hemorragia y desencadenando pruebas adicionales apropiadas, antes de que el paciente salga del escáner”, agregó el autor, Shahein Tajmir, MD, del servicio de Radiología en el MGH. “El próximo paso será implementar el sistema en áreas clínicas y validar aún más su desempeño con muchos más casos. Actualmente estamos construyendo una plataforma para permitir la aplicación generalizada de dichas herramientas en todo el departamento. Una vez que tengamos esto funcionando en el entorno clínico, podemos evaluar su impacto en el tiempo de respuesta, la exactitud clínica y el tiempo para el diagnóstico”.
Enlace relacionado:
Hospital General de Massachusetts
Los investigadores entrenaron el sistema con 904 tomografías computarizadas de la cabeza, cada una de ellas consistiendo en alrededor de 40 imágenes individuales, que fueron etiquetadas por los neurorradiólogos en cuanto a si representaban uno de los cinco subtipos de hemorragia, según la ubicación dentro del cerebro o sin hemorragia. El equipo mejoró la exactitud del sistema de aprendizaje profundo incorporando pasos que imitan la forma en que los radiólogos analizan las imágenes. Estos incluyen factores de ajuste como el contraste y el brillo para revelar diferencias sutiles que no son evidentes de inmediato y el desplazamiento a través de los cortes de tomografía computarizada adyacentes, para determinar si algo que aparece en una imagen refleja un problema real o es un artefacto sin sentido.
Después de que se creó el sistema modelo, los investigadores lo probaron en dos conjuntos separados de tomografías computarizadas: un conjunto retrospectivo tomado antes del desarrollo del sistema, que consiste en 100 exploraciones con hemorragia intracraneal y 100 sin esta condición, y una serie prospectiva de 79 exámenes con y 117 exámenes sin hemorragia intracraneal, tomadas después de creado el modelo. En su análisis del conjunto retrospectivo, el sistema modelo fue tan exacto para la detección y clasificación de las hemorragias intracraneales como lo habían sido los radiólogos que habían revisado las imágenes de los exámenes. En su análisis del conjunto prospectivo, el sistema demostró ser incluso mejor que los lectores humanos no expertos.
Para resolver el problema de la “caja negra” o la incapacidad de los sistemas para explicar cómo llegaron a una decisión, el equipo hizo que el sistema revisara y guardara las imágenes del conjunto de datos de entrenamiento que representaban más claramente las características clásicas de cada uno de los cinco subtipos de hemorragias. Usando este atlas de características distintivas, el sistema puede mostrar un grupo de imágenes similares a las de la exploración por TAC, que se analiza para explicar la razón de sus decisiones.
“El rápido reconocimiento de la hemorragia intracraneal, conduciendo a un tratamiento adecuado e inmediato de los pacientes con síntomas agudos de accidente cerebrovascular, puede prevenir o mitigar una discapacidad grave o la muerte”, dijo el coautor Michael Lev, MD, del departamento de radiología del MGH. “Muchas instalaciones no tienen acceso a neurorradiólogos especialmente capacitados, en particular de noche o durante los fines de semana, lo que puede requerir que proveedores no expertos determinen si una hemorragia es la causa de los síntomas de un paciente. La disponibilidad de una “segunda opinión virtual” confiable, entrenada por neurorradiólogos, podría hacer que esos proveedores sean más eficientes y seguros y ayudar a asegurar que los pacientes reciban el tratamiento correcto”.
“Además de proporcionar, la tan necesaria segunda opinión virtual, este sistema también se podría implementar directamente en los escáneres, alertando al equipo de atención sobre la presencia de una hemorragia y desencadenando pruebas adicionales apropiadas, antes de que el paciente salga del escáner”, agregó el autor, Shahein Tajmir, MD, del servicio de Radiología en el MGH. “El próximo paso será implementar el sistema en áreas clínicas y validar aún más su desempeño con muchos más casos. Actualmente estamos construyendo una plataforma para permitir la aplicación generalizada de dichas herramientas en todo el departamento. Una vez que tengamos esto funcionando en el entorno clínico, podemos evaluar su impacto en el tiempo de respuesta, la exactitud clínica y el tiempo para el diagnóstico”.
Enlace relacionado:
Hospital General de Massachusetts
Últimas Industria noticias
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
- Dispositivos de rayos X de Samsung funcionarán con soluciones de IA de Lunit para exámenes avanzados de tórax
- Canon Medical y Olympus colaboran en sistemas de ultrasonido endoscópico
- GE HealthCare adquiere empresa de análisis de imágenes por IA MIM Software
- Primeros criterios internacionales establecen las bases para mejorar diagnóstico por imágenes de tumores cerebrales
- RSNA revela los 10 estudios de radiología más citados de 2023
- Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más
- Según un estudio, productos de imágenes médicas por IA se quintuplicarán para 2035
- Exposiciones técnicas de RSNA 2023 destacan las últimas innovaciones en imágenes médicas
- Tecnologías impulsadas por IA ayudan a interpretar rediografías e imágenes de resonancias magnéticas para mejorar diagnóstico de enfermedades
- Hologic y Bayer se asocian para mejorar imágenes de mamografía
- Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos
- Mercado mundial de ultrasonido mejorado por contraste impulsado por demanda de detección temprana de enfermedades crónicas
- Uso de imágenes avanzadas aumenta en departamentos de emergencia
- Mercado mundial de sistemas móviles de arco en C impulsado por avances tecnológicos en capacidades de imagen
Canales
Radiografía
ver canal
Solución de IA para rayos X de tórax identifica, categoriza y resalta automáticamente áreas sospechosas
La radiografía de tórax es la herramienta de imagen predominante empleada en las prácticas clínicas habituales y es crucial para detectar diversas enfermedades.... Más
IA diagnostica fracturas de muñeca tan bien como radiólogos
En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el... MásRM
ver canal
Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata
Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más
La máquina de resonancia magnética más potente del mundo captura imágenes del cerebro vivo con una claridad inigualable
El escáner de resonancia magnética (MRI) más potente del mundo ha generado sus primeras imágenes del cerebro humano, demostrando nuevos niveles de precisión que podrían... Más
Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales
El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos.... MásUltrasonido
ver canal
Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico
El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más
Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido
La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... MásMedicina Nuclear
ver canal
Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar
Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más
El nuevo sistema radioteranástico detecta y trata el cáncer de ovario de forma no invasiva
El cáncer de ovario es el cáncer ginecológico más letal, con una tasa de supervivencia a cinco años inferior al 30% para los diagnosticados en etapas tardías.... Más
Nuevo método para desencadenar y obtener imágenes de convulsiones para ayudar a guiar cirugía de epilepsia
Las personas que experimentan epilepsia y convulsiones que no pueden controlarse con medicamentos a menudo encuentran beneficiosa la cirugía cerebral. Este procedimiento tiene como objetivo extirpar... MásImaginología General
ver canal
Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC
El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más.jpg)
El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas
Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más